THE JOURNAL OF ANTIBIOTICS

JUNE 1988

THE SYNTHESIS OF 2-(FUNCTIONALIZED METHYL)- 1β -METHYLCARBAPENEMS

SUSAN M. SCHMITT, THOMAS N. SALZMANN, DAVID H. SHIH and Burton G. Christensen

Merck Sharp and Dohme Research Laboratories, Rahway, New Jersey 07065, U.S.A.

(Received for publication January 21, 1988)

The synthesis of 1β -methylcarbapenems having a ROCH₂ substituent at the 2-position is described. Their *in vitro* antibacterial activity and DHP-I susceptibilities are presented.

Due to the increased chemical and metabolic stability and the potent antibacterial activity of (-)-(1R, 1''R, 5S, 6S)-2-(2'-N, N-dimethylamino-2'-iminoethylthio)-6-(1''-hydroxyethyl)-1-methylcarbapen-2-em-3-carboxylic acid $(1)^{1}$, the 1 β -methylcarbapenems, in general, are of great interest to us and others. Specifically, our recent synthetic efforts have been directed toward the preparation of 1β -methylcarbapenems having a functionalized methyl group at the 2-position as in 2. This publication will present the preparation and bioactivity of 2 where X=O and R has been varied as indicated in structures $2a \sim 2g$. Cases where XR=SR in structure 2 will be discussed in a paper now in preparation from these laboratories. Similar 2-(functionalized methyl) compounds have been synthesized in the penem and carbapenem series^{2~6)}. However, in the carbapenem series, it has been reported that hydrogenolytic deblock to give the material analogous to 2a was unsuccessful and that other *O*-derivatives were unstable in high aqueous concentration⁶⁾.

Chemistry

The pyridyl thioester $3a^{70}$ was converted to the methyl ketone 3b with MeMgBr (66%), and the silyl group was removed to yield 3c (0.2 M HCl in aqueous MeOH 84%). Reprotection of the alcohol with allyl chloroformate in the presence of 4-dimethylaminopyridine (DMAP) provided 3d (80%). Interchange of the protecting groups was deemed necessary since F⁻-mediated desilylation (in some instances where X=S) had caused partial double bond migration to the exocyclic position. Hydroxylation of the enolate of 3d was accomplished using MoOPH⁶ to give 3e (58%). Cyclization in refluxing toluene then provided the key 2-hydroxymethyl-1 β -methylcarbapenem 4a (76%) which was deblocked⁹ to give 2a (66%).

A MITSUNOBU reaction¹⁰⁾ on 4a provided the acetoxymethyl species 4b (75%) which was deblocked as above to give 2b (45%). Reaction

Table 1. Relative antibacterial potencies^a and DHP-I susceptibilities of $2a \sim 2g$.

Organism	2a	2b	2c	2d	2e	2f	2g
Staphylococcus aureus ^b	0.4	0.7	0.9	0.8	1.2	1.4	0.87
Enterococcus°	1.0	2.8	5.7	3.7	2.8	1.2	2.3
Escherichia coli ^a	2.3	4.0	6.1	5.7	0.6	0.6	0.93
Enterobacter [®]	3.7	7.0	23	9.8	0.2	0.8	2.1
Klebsiellaf	2.0	2.5	7.0	7.0	0.2	0.4	1.1
Serratia ^g	4.3	12	32	16	0.3	1.4	2.1
$\frac{Proteus^{h}}{(indole+ and -)}$	3.0	28	15	16	4.9	11	2.5
Pseudomonas aeruginosa ⁱ	0.2	0.09	0.4	0.2	0.03	0.04	0.33
DHP ^j susceptibility	0.76	0.52	0.39	0.59	1.35	0.29	0.05

^a Agar diffusion assay: Antibiotic activity is expressed as the geometric mean potency against the genus or species relative to thienamycin=1. Strains, deposited in the Culture Collection of Merck & Co., Inc., are as follows.

- ^b MB No. 2985, 2314, 210, 2867.
- MB No. 2862, 2863, 2864.
- ^d MB No. 2482, 2964, 2884, 2891.
- MB No. 2646, 2647, 2828, 2902, 2903, 2906.
- ^f MB No. 2888, 2890, 2889, 2921, 2922.
- ^g MB No. 2840, 2855.

^h MB No. 3125, 2830, 2831, 2833, 2834.

¹ MB No. 2835, 3286, 3350, 3286CB.

J DHP assay: Activity is expressed relative to thienamycin=1.

of 4a with trichloroacetyl isocyanate in CCl₄ followed by concentration and methanolysis in the presence of silica gel¹¹ provided the carbamoyl 4c (85%) which was deblocked to give 2c (46%).

The bioactivity of 2c (Table 1) prompted us to explore the urethane area more completely. Condensation of 4a with excess methyl and phenyl isocyanate in a sealed tube gave 4d (79%) and 4e (54%) which were deblocked to provide 2d (65%) and 2e (36%) respectively. The dimethylurethane 4f (32%) was prepared by treating 4a with phosgene in toluene in the presence of dimethylaniline followed by dimethylamine in toluene. Deblock then provided 2f (59%).

The effect of the presence of a cationic site on the urethane side chain was demonstrated by preparing the iodoethylurethane 4g (74%) by treating 4a with $I(CH_2)_2NCO$ in toluene in the presence of 1 equivalent pyridine. The iodo was then displaced by heating 4g at 70°C in pyridine to give the pyridinium iodide 4h (52%). Deblock then gave 2g (29%).

Biological Results and Discussion

The bioactivities and DHP-I susceptibilities¹²⁾ of $2a \sim 2g$ are reported in Table 1. The unsubstituted urethane 2c is by far the most active compound and except for its DHP-I susceptibility, and reduced *Pseudomonas* Index (retains only 40% of the activity of thienamycin) would warrant further attention. As expected, the cationic side chain present in 2g did substantially decrease the compound's susceptibility to the DHP-I dipeptidase, but its activity, except for *Pseudomonas*, was much reduced relative to 2c. A report on our further work in the area of 2-(functionalized methyl)- 1β -methylcarbapenems is planned.

Experimental

IR spectra were recorded on a Perkin-Elmer 137 grating spectrophotometer. Mass spectra were recorded on a LKB Model 9000 spectrometer. ¹H NMR spectra were recorded on Varian XL-200 (200 MHz) and Varian SC-300 (300 MHz) spectrometers. Chemical shifts are expressed in ppm downfield from TMS. In the case of spectra taken in D_2O no internal standard was used; the DOH peak is assigned at 4.80 ppm. UV spectra were recorded on a Perkin-Elmer 552A spectrophotometer. Preparative TLC was performed on 1,000- μ m Analtech Silica gel GF plates. Product bands were extracted with EtOAc - CH₂Cl₂ (1:1) or MeOH - CH₂Cl₂ (1:9). Aqueous preparative TLC was performed on Baker (60~200 mesh) silica gel. Product solutions were concentrated at ambient temperature using a Büchi rotatory evaporator at 15~25 mmHg.

(3*S*,4*R*)-1-[[(Allyloxy)carbonyl](triphenylphosphoranylidene)methyl]-3-[(1'*R*)-1'-[(*tert*-butyldimethylsilyl)oxy]ethyl]-4-[(1''*R*)-1''-(methylcarbonyl)ethyl]azetidin-2-one (3b)

To a stirred soln of 1.06 g (1.41 mmol) thiopyridyl ester $3a^{73}$ in 25 ml anhydrous THF at -78° C under N₂ was added dropwise 690 μ l 3 M MeMgBr (2.07 mmol) in ether. After 5 minutes an additional 140 μ l 3 M MeMgBr (0.42 mmol) was added, and stirring was continued for 10 minutes. The reaction mixture was added to 35 ml satd NH₄Cl soln, H₂O and 40 ml EtOAc. The aq layer was extracted again with EtOAc. The combined organic layers were washed sequentially with 35 ml cold 1 N HCl, 35 ml cold 10% NaHCO₃ and 35 ml brine. After drying over MgSO₄ the organic layer was concd *in vacuo*, and the resultant foam was chromatographed on silica gel (gradient elution with 0 to 20% EtOAc in CH₂Cl₂) to give 800 mg **3b** (approx 90% pure).

Preparative TLC eluting with EtOAc - hexane (1:1) then provided pure **3b** (650 mg, 70%): IR (CH₂Cl₂) cm⁻¹ 1750, 1720, 1650, 1625; MS m/z 658 (M+1), 600 (M-*tert*-butyl); ¹H NMR (CDCl₃) δ (selected absorbances) 0.8 (C(CH₃)₃), 2.22 (s, CH₃C=O), 6.0 (m, CH=CH₂), 7.4~8.0 (aromatic protons).

 $\frac{(3S,4R)-1-[[(Allyloxy)carbonyl](triphenylphosphoranylidene)methyl]-3-[(1'R)-1'-hydroxyethyl]-4-[(1''R)-1''-(methylcarbonyl)ethyl]azetidin-2-one (3c)$

At ambient temperature 38 mg (0.058 mmol) methyl ketone **3b** was stirred under N₂ in 2.4 ml of 0.2 N HCl in MeOH - H₂O (9:1) for 6 hours. After the addition of 1.2 ml 1 M K₂HPO₄, 0.7 ml 1 M KH₂PO₄, 5 ml H₂O and extraction with 5 ml EtOAc, the aq phase was again extracted with EtOAc. The combined organic layers were washed with brine, dried (MgSO₄) and concd *in vacuo* to give crude **3c**. Preparative TLC eluting with EtOAc provided **3c** (26 mg, 84%): IR (CH₂Cl₂) cm⁻¹ 3550, 1745, 1700, 1640, 1620; MS m/z 544 (M+1), 262 (Ph₃P), 185; ¹H NMR (CDCl₃) δ (selected absorbances) 1.01 (d, CH₃CHOH), 1.53 (d, 1 β -CH₃), 2.19 (s, CH₃C=O), 6.0 (m, CH=CH₂), 7.4~8.0 (aromatic protons).

(3S,4R)-1-[[(Allyloxy)carbonyl](triphenylphosphoranylidene)methyl]-3-[(1'R)-1'-[[(allyloxy)carbon-yl]oxy]ethyl]-4-[(1''R)-1''-(methylcarbonyl)ethyl]azetidin-2-one (3d)

A stirred soln of 66 mg (0.12 mmol) of 3c in 0.5 ml CH₂Cl₂ was treated with 19 mg (0.16 mmol)

DMAP and 16 μ l (0.15 mmol) allyl chloroformate at 0°C under N₂ for 10 minutes followed by 50 minutes at ambient temperature. Equivalent amounts of the chloroformate and DMAP were then added and stirring continued for 2.5 hours. Equivalent amounts of both reagents were again added followed by an additional 2-hour of reaction time. Dilution of the reaction mixture with CH₂Cl₂ was followed by extraction with 1.5 ml 1 M K₂HPO₄ and 1 ml 1 M KH₂PO₄. The aq layer was again extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried (MgSO₄), and concd *in vacuo* to provide crude **3d**. Preparative TLC eluting with EtOAc - hexane (1:1) afforded **3d** (61 mg, 80%): IR (CH₂Cl₂) cm⁻¹ 1750, 1725, 1650, 1625; MS *m*/*z* 628 (M+1), 570 (M-O-allyl), 262 (Ph₃P); ¹H NMR (CDCl₃) δ (selected absorbances) 1.07 (d, CH₃CHO), 1.38 (d, 1 β -CH₃), 5.94 (m, CH=CH₂), 7.4~8.0 (aromatic protons).

(3S,4R)-1-[[(Allyloxy)carbonyl](triphenylphosphoranylidene)methyl]-3-[(1'R)-1'-[[(allyloxy)carbonyl](triphenylphosphoranylidene)methyl]-3-[(1'R)-1'-([(allyloxy)carbonyl](triphenylphosphoranylidene)methyl]-3-[(1'R)-1'-([(allyloxy)carbonylphosphoranylidene)methyl]-3-[(1'R)-1'-[[(allyloxy)carbonylphosphoranylidene)methyl]-3-[(1'R)-1'-[[(allyloxy)carbonylphosphoranylphosphoranylidene)methyl]-3-[(1'R)-1'-[[(allyloxy)carbonylphosphoranylp

To a stirred soln of 264 μ l (1.9 mmol) diisopropylamine in 9 ml anhydrous THF at 0°C under N₂ was added 1.2 ml of 1.6 M BuLi (1.9 mmol) in hexane. After a few minutes, 6.5 ml of the above LDA soln (1.2 mmol) was added to a soln of 591 mg 3d (0.94 mmol) in 21 ml THF at -78° C under N₂. After 30 seconds 622 mg (1.43 mmol) MoOPH was added, and the reaction mixture was warmed to -30° C and stirred for 1 hour. The reaction mixture was then poured into 10 ml concd Na₂SO₃, 4.5 ml 1 M KH₂PO₄, 36 ml H₂O and 55 ml EtOAc and stirred for 5 minutes. The layers were separated, and the aq layer was re-extracted with EtOAc. The combined organic layers were extracted with brine, dried (MgSO₄) and concd *in vacuo* to give crude 3e. Preparative TLC eluting with EtOAc -CH₂Cl₂ (1:1) afforded 3e (348 mg, 58%): IR (CH₂Cl₂) cm⁻¹ 3590 (br), 1740, 1640, 1620; MS *m/z* 644 (M+1), 262 (Ph₃P); ¹H NMR (CDCl₃) δ (selected absorbances) 1.08 (d, CH₃CHO), 1.39 (d, 1 β -CH₃), 4.28 (CH₂OH), 5.93 (m, CH=CH₂), 7.4~7.9 (aromatic protons).

A soln of 338 mg (0.53 mmol) of 3e in 35 ml toluene was heated at reflux for 1 hour under N₂. After conc *in vacuo* preparative TLC of the crude material eluting with EtOAc - CH₂Cl₂ (1 : 1) provided the bicyclic carbapenem 4a (145 mg, 76%): IR (CH₂Cl₂) cm⁻¹ 3560 (br), 1775, 1740, 1720 (sh); MS m/z 366 (M+1); ¹H NMR (CDCl₃) δ 1.20 (d, 1 β -CH₃), 1.46 (d, CH₃CHO), 3.14 (t, J=6 Hz, OH), 3.23 (m, 1-H), 3.42 (dd, J=3 and 8 Hz), 4.18 (dd, J=3 and 10 Hz, 6-H), 4.37 (dd, J=15 and 6 Hz, CH₂OH), 4.50 (dd, J=15 and 6 Hz, CH₂OH), 4.62 and 4.77 (center of m's for two CH₂CH=CH₂), 5.13 (m, 1'-H), 5.26~5.48 (m, two CH=CH₂), 5.94 (m, two CH=CH₂).

 $\underline{Potassium (1S, 5R, 6S)-2-Hydroxymethyl-6-[(1'R)-1'-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (2a)}$

A mixture of 19 mg (0.052 mmol) of 4a, 4 mg Ph₃P (0.0153 mmol), 4.8 mg tetrakistriphenylphosphine palladium (0.0042 mmol), 110 μ l of 0.5 M potassium 2-ethylhexanoate in EtOAc (0.055 mmol) and 8.8 μ l (0.055 mmol) 2-ethylhexanoic acid in 2 ml EtOAc - CH₂Cl₂ (1:1) was stirred at ambient temperature for 2 hours. After conc *in vacuo*, the residue was washed with Et₂O (3×1 ml). The resultant white solid was dried *in vacuo*, dissolved in 600 μ l 2% EtOH in H₂O and chromatographed on two 500- μ m RPS-F plates eluting with 4% EtOH in H₂O in a cold room. The main UV active band was extracted with 30 ml CH₃CN - H₂O (4:1), concd *in vacuo* to a volume of approx 6 ml and extracted with hexane (2×2 ml). Lyophilization of the aq soln at 0°C yielded the title compound 2a (9.6 mg, 66%): UV $\lambda_{\text{max}}^{\text{Ho}}$ nm (ε) 268 (4,500) (NH₂OH extinguishable); ¹H NMR (D₂O, DOH at 4.80) δ 1.10 (d, 1 β -CH₃), 1.27 (d, CH₃CHO), 3.26 (m, 1-H), 3.40 (dd, J=3 and 6 Hz, 6-H), 4.21 (m, 5-H and 1'-H), 4.26 (d, J=14 Hz, CH₂OH), 4.64 (d, J=14 Hz, CH₂OH).

 $\underline{\text{Allyl (1S,5R,6S)-2-Acetoxymethyl-6-[(1'R)-1'-[[(allyloxy)carbonyl]oxy]ethyl]-1-methylcarbapen-2-em-3-carboxylate (4b) }$

At ambient temperature under N₂ 12 μ l (0.08 mmol) diethylazodicarboxylate, 4.5 μ l HOAc (0.08 mmol) and 21 mg Ph₃P (0.08 mmol) were added to a stirred soln of 25 mg (0.07 mmol) of 4a in 0.7 ml Et₂O. After 5 minutes 1 ml of 0.5 M pH 7 phosphate buffer and additional Et₂O was added. The

layers were separated, and the aq layer was re-extracted with Et₂O. The combined Et₂O layers were washed with brine, dried (MgSO₄) and concd *in vacuo* to give crude **4b**. Preparative TLC eluting with EtOAc - hexane (1:1) provided **4b** (22 mg, 75%): IR (CH₂Cl₂) cm⁻¹ 1790, 1755; ¹H NMR (CDCl₃) δ 1.19 (d, 1 β -CH₃), 1.47 (d, CH₃CHO), 2.10 (s, Ac), 3.29 (m, 1-H), 3.45 (dd, J=3 and 8 Hz, 6-H), 4.24 (dd, J=3 and 10 Hz, 5-H), 4.60~4.92 (m's, COOCH₂), 4.87 (d, J=15 Hz, CH₂OAc), 5.16 (m, CH₃CHO), 5.26~5.54 (m, CH=CH₂), 5.44 (d, J=15 Hz, CH₂OAc), 5.97 (m, CH=CH₂).

Potassium (1S, 5R, 6S)-2-Acetoxymethyl-6-[(1'R)-1'-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (2b)

Deblocking 22 mg (0.054 mmol) of 4b as described in the preparation of 2a provided crude 2b which was dissolved in 0.8 ml CH₂Cl₂ and chromatographed in the cold on two 500- μ m RPS-F plates eluting with 5% EtOH in H₂O. Work-up of the plates and lyophilization as described for 2a provided the title compound 2b (7.9 mg, 45%): UV $\lambda_{\text{max}}^{\text{H},0}$ nm (ε) 267 (4,700) (NH₂OH extinguishable); ¹H NMR (D₂O, DOH at 4.80) δ 1.10 (d, 1 β -CH₃), 1.25 (d, CH₃CHO), 2.08 (s, Ac), 3.24 (m, 1-H), 3.42 (dd, J=2 and 6 Hz, 6-H), 4.19 (m, 5-H and 1'-H), 4.71 (half of d, other half under DOH, CH₂OAc), 5.30 (d, J=12 Hz, CH₂OAc).

 $\frac{\text{Allyl } (1S, 5R, 6S) - 2 - [[(\text{Aminocarbonyl})\text{oxy}]\text{methyl}] - 6 - [(1'R) - 1' - [[(\text{allyloxy})\text{carbonyl}]\text{oxy}]\text{ethyl}] - 1 - \text{methylcarbapen-2-em-3-carboxylate } (4c)$

A soln of trichloroacetyl isocyanate (0.073 mmol) in 0.5 ml CCl₄ was added to 25 mg (0.068 mmol) of **4a** in 2 ml CCl₄. After stirring under N₂ for 1 hour at ambient temperature, the reaction was concd *in vacuo*. The residue was dissolved in 1.1 ml MeOH and stirred in the presence of 280 mg silica gel at 35°C for 2 hours. The mixture was filtered, and the silica gel was washed well with MeOH - CH₂Cl₂ (1:9) (5×2 ml) and then EtOAc - CH₂Cl₂ (1:1) (2×5 ml). The combined initial filtrate and washings were concd *in vacuo* and then redissolved in CH₂Cl₂ and dried (MgSO₄). Conc *in vacuo* then provided the crude carbamate **4c**. Preparative TLC eluting with EtOAc - CH₂Cl₂ (1:5) provided pure **4c** (24 mg, 85%): IR (CH₂Cl₂) cm⁻¹ 3650, 3530, 1780, 1740; ¹H NMR (CDCl₃) δ 1.20 (d, 1 β -CH₃), 1.47 (d, CH₃CHO), 3.30 (m, 1-H), 3.45 (dd, J=3 and 8 Hz, 6-H), 4.23 (dd, J=3 and 10 Hz, 5-H), 4.60~4.94 (m, COOCH₂'s), 4.88 (d, J=14 Hz, CH₂O), 5.14 (m, 1'-H), 5.26~5.52 (m, CH=CH₂'s), 5.43 (d, J=14 Hz, CH₂O), 5.98 (m, CH=CH₂'s).

 $\underline{Potassium (1S,5R,6S)-2-[[(Aminocarbonyl)oxy]methyl]-6-[(1'R)-1'-hydroxyethyl]-1-methylcar-bapen-2-em-3-carboxylate (2c)$

Deblocking 24 mg (0.058 mmol) of 4c as described in the preparation of 2a provided crude 2c which was dissolved in 600 μ l 2.5% EtOH in H₂O and chromatographed in the cold on two 500- μ m RPS-F plates eluting with 5% EtOH in H₂O. Work-up of the plates and lyophilization as described for 2a provided the title compound 2c (11 mg, 60%): UV $\lambda_{max}^{H_0}$ nm (ε) 267 (4,600) (NH₂OH extinguishable); ¹H NMR (D₂O, DOH at 4.80) δ 1.13 (d, 1 β -CH₃), 1.27 (d, CH₃CHO), 3.26 (m, 1-H), 3.44 (dd, J=3 and 6 Hz, 6-H), 4.24 (m, 5-H and 1'-H), 4.72 (half of d, CH₂O), 5.28 (d, J=14 Hz, CH₂O).

 $\underline{\text{Allyl } (1S, 5R, 6S) - 2 - [[(Methylaminocarbonyl)oxy]methyl] - 6 - [(1'R) - 1' - hydroxyethyl] - 1 - methylcarbapen - 2 - em - 3 - carboxylate (4d)}$

A soln of 53 mg (0.15 mmol) of 4a in 650 μ l MeNCO was heated in a sealed tube at 65°C for 24 hours. The reaction mixture was concd *in vacuo* to give the crude carbamate 4d. Preparative TLC eluting with EtOAc - hexane, 1:1 provided 4d (46 mg, 73%): IR (CH₂Cl₂) cm⁻¹ 3570, 1780, 1740 (sh), 1720; ¹H NMR (CDCl₃) δ 1.18 (d, 1 β -CH₃), 1.45 (d, CH₃CHO), 2.81 (d, NHCH₃), 3.26 (m, 1-H), 3.42 (dd, J=3 and 8 Hz, 6-H), 4.19 (dd, J=3 and 10 Hz, 5-H), 4.58~4.86 (m, COOCH₂'s), 4.86 (d, J=14 Hz, CH₂O), 5.12 (m, 1'-H), 5.24~5.50 (m, CH=CH₂'s), 5.44 (d, J=14 Hz, CH₂O), 5.95 (m, CH=CH₃'s).

Potassium (1S,5R,6S)-2-[[(Methylaminocarbonyl)oxy]methyl]-6-[(1'R)-1'-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (2d)

Deblocking 58 mg (0.14 mmol) of 4d as described in the preparation of 2a provided crude 2d which was dissolved in 1 ml H₂O and chromatographed in the cold on two 1,000- μ m RPS-F plates eluting

with 5% EtOH in H₂O. Work-up of the plates and lyophilization as described for 2a provided the title compound 2d (30 mg, 64%): UV $\lambda_{max}^{H_0}$ nm (ε) 267 (6,300) (NH₂OH extinguishable); ¹H NMR (D₂O, DOH at 4.80) δ 1.16 (d, 1 β -CH₃), 1.31 (d, CH₃CHO), 2.74 (s, NHCH₃), 3.27 (m, 1-H), 3.46 (dd, J=3 and 6 Hz, 6-H), 4.26 (m, 5-H and 1'-H), 4.74 (half of d, CH₂O), 5.32 (d, J=14 Hz, CH₂O).

$\frac{\text{Allyl } (15,5R,6S)-2-[[(Phenylaminocarbonyl)oxy]methyl]-6-[(1'R)-1'-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (4e)}{2}$

A soln of 57 mg (0.16 mmol) of 4a in 0.3 ml PhNCO and 0.3 ml toluene was heated in a sealed tube at 70°C overnight. After conc *in vacuo*, the residue was purified by preparative TLC eluting with EtOAc - CH₂Cl₂ (1:9) to give 4e (41 mg, 54%): IR (CH₂Cl₂) cm⁻¹ 3530, 1780, 1740; ¹H NMR (CDCl₃) δ 1.21 (d, 1 β -CH₃), 1.46 (d, CH₃CHO), 3.31 (m, 1-H), 3.43 (dd, J=3 and 8 Hz, 6-H), 4.21 (dd, J=3 and 10 Hz, 5-H), 4.54~4.88 (m, COOCH₂'s), 4.95 (d, J=14 Hz, CH₂O), 5.12 (m, 1'-H), 5.22~5.40 (m, CH=CH₂'s), 5.52 (d, J=14 Hz, CH₂O), 5.93 (m, CH=CH₂'s), 6.64 (br s, NH), 7.02~7.40 (m, aromatic protons).

Potassium (1S,5R,6S)-2-[[(Phenylaminocarbonyl)oxy]methyl]-6-[(1'R)-1'-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (2e)

Deblocking 40 mg (0.08 mmol) of 4e as described in the preparation of 2a provided crude 2e which was dissolved in 1 ml CH₂Cl₂ and chromatographed in the cold on two 1,000- μ m RPS-F plates eluting with CH₃CN - H₂O (1:9). Work-up of the plates and lyophilization as described for 2a provided the title compound 2e (12 mg, 36%): UV $\lambda_{max}^{H_0}$ nm (ε) 233, 267 (7,100) (NH₂OH extinguishable); ¹H NMR (D₂O, DOH at 4.80) δ 1.15 (d, 1 β -CH₃), 1.27 (d, CH₃CHO), 3.28 (m, 1-H), 3.44 (dd, J=3 and 6 Hz, 6-H), 4.21 (m, 5-H and 8-H), 4.87 (part of d, CH₂O), 5.39 (d, J=14 Hz, CH₂O), 7.11~7.44 (m, aromatic protons).

To a soln of 26 mg (0.071 mmol) of 4a in 1 ml toluene at 0°C under N₂ was added 13.5 μ l (0.11 mmol) *N*,*N*-dimethylaniline and 56 μ l (0.11 mmol) of 1.93 M phosgene in toluene. After 1 hour 18 μ l (0.15 mmol) *N*,*N*-dimethylaniline and 68 μ l (0.14 mmol) of 2.1 M dimethylamine in toluene was added, and the reaction was stirred at 0°C for 1 hour. A mixture of EtOAc, 1 ml 1 M K₂HPO₄ and 1 ml 1 M KH₂PO₄ was added, and after phase separation the aq layer was re-extracted with EtOAc. The combined organic layers were washed with brine, dried (MgSO₄) and concd *in vacuo* to provide crude 4f. Preparative TLC eluting with 30% acetone in hexane provided pure 4f (14 mg, 45%): IR (CH₂Cl₂) cm⁻¹ 1780, 1750, 1700; ¹H NMR (CDCl₃) δ 1.19 (d, 1 β -CH₃), 1.47 (d, CH₃CHO), 2.90 and 2.92 (2s, NCH₃'s), 3.27 (m, 1-H), 3.41 (dd, *J*=3 and 8 Hz, 6-H), 4.19 (dd, *J*=3 and 10 Hz, 5-H), 4.56~ 4.84 (m, COOCH₂'s), 4.86 (d, *J*=14 Hz, CH₂O), 5.12 (m, 1'-H), 5.24~ 5.50 (m, CH=CH₂'s), 5.42 (d, *J*=14 Hz, CH₂O), 5.95 (m, CH=CH₂'s).

$\frac{\text{Potassium}(1S, 5R, 6S)-2-[[(Dimethylaminocarbonyl)oxy]methyl]-6-[(1'R)-1'-hydroxyethyl]-1-methyl-carbopen-2-em-3-carboxylate (2f)}{2}$

Deblocking 27 mg (0.062 mmol) of 4f as described in the preparation of 2a provided crude 2f which was dissolved in 0.8 ml H₂O and chromatographed in the cold on two 1,000- μ m RPS-F gel plates eluting with 12% CH₃CN in H₂O. Work-up of the plates and lyophilization as described for 2a provided the title compound 2f (13 mg, 59%): UV λ_{max}^{HO} nm (ε) 266 (6,200) (NH₂OH extinguishable); ¹H NMR (D₂O, DOH at 4.80) δ 1.15 (d, 1 β -CH₃), 1.29 (d, CH₃CHO), 2.92 (s, NCH₃'s), 3.27 (m, 1-H), 3.44 (dd, J=3 and 6 Hz, 6-H), 4.21 (m, 5-H and 1-H), 4.72 (half of d, CH₂O), 5.30 (d, J=14 Hz, CH₂O).

Allyl (1*S*,5*R*,6*S*)-2-[[[2'-(Iodoethylamino)carbonyl]oxy]methyl]-6-[(1''*R*)-1''-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (**4**g)

A soln of 93 mg (0.25 mmol) of 4a, 21 μ l (0.26 mmol) pyridine, and 62 μ l (0.62 mmol) iodoethyl isocyanate in 1 ml toluene was heated at 70°C for 2.5 hours under N₂. After conc *in vacuo* preparative TLC eluting with EtOAc - CH₂Cl₂ (1:9) provided 4g (104 mg, 74%): IR (CH₂Cl₂) cm⁻¹ 3520, 1780,

1740 (sh), 1725; MS m/z 563 (M+1); ¹H NMR 1.19 (d, 1 β -CH₃), 1.47 (d, CH₃CHO), 3.27 (m, CH₂I), 3.42 (dd, J=3 and 8 Hz, 6-H), 3.55 (m, NCH₂), 4.20 (dd, J=3 and 10 Hz, 5-H), 4.58~4.86 (m, COOCH₂'s), 4.86 (d, J=14 Hz, CH₂O), 5.12 (m, 1"-H), 5.22~5.48 (m, CH=CH₂), 5.43 (d, J=14 Hz, CH₂O), 5.96 (m, CH=CH₂'s).

Iodide of Allyl (1S,5R,6S)-2[[[[2'-(Pyridiniumethyl)amino]carbonyl]oxy]methyl]-6-[(1''R)-1''-hydroxyethyl]-1-methylcarbapen-2-em-3-carboxylate (4h)

A soln of 104 mg (0.19 mmol) 4g in 1 ml pyridine was heated under N₂ at 70°C for 2 hours. After conc *in vacuo* preparative TLC eluting with MeOH - CH₂Cl₂ (1:9) provided the pyridinium iodide 4h (62 mg, 52%): IR (CH₂Cl₂) cm⁻¹ 1780, 1750, 1725; MS *m*/*z* 514 (M–I); ¹H NMR (CDCl₃) δ 1.14 (d, 1 β -CH₃), 1.46 (d, CH₃CHO), 3.33 (m, 1-H), 3.42 (dd, *J*=3 and 8 Hz, 6-H), 3.93 (m, NHCH₂), 4.20 (dd, *J*=3 and 10 Hz, 5-H), 4.59 (d, *J*=14 Hz, CH₂O), 4.66~4.86 (m, COOCH₂'s), 5.18 (m, 1"-H), 5.28~5.52 (m, CH₂ pyridine, CH=CH₂'s half of CH₂O), 5.96 (m, CH=CH₂'s), 6.67 (t, NH), 8.08, 8.52 and 9.28 (t, t, d, aromatic protons).

(1S, 5R, 6S) - 2[[[2' - (Pyridiniumethyl)amino]carbonyl]oxy]methyl] - 6 - [(1''R) - 1'' - hydroxyethyl] - 1 - methylcarbapen-2-em-3-carboxylate (2g)

Deblocking 62 mg (0.097 mmol) of 4h as described in the preparation of 2a using 15 mg Ph₃P (0.057 mmol) and 20 mg (Ph₃P)₄Pd (0.017 mmol) provided crude 2g which was dissolved in 1 ml THF - H₂O (1:9) and chromatographed in the cold on two 1,000- μ m RPS-F plates eluting with THF - H₂O (1:9). Work-up of the plates and lyophilization as described for 2a provided the title compound 2g (11 mg, 29%): UV $\lambda_{max}^{H_{10}}$ nm 259, 263 (sh) (partially NH₂OH extinguishable); ¹H NMR (D₂O, DOH at 4.80) δ 1.05 (d, 1 β -CH₃), 1.27 (d, CH₃CHO), 3.08 (m, 1-H), 3.41 (dd, J=2.5 and 6 Hz, 6-H), 3.72 (m, NHCH₂), 4.14 (dd, J=2.5 and 10 Hz, 5-H), 4.22 (m, 1"-H), 4.54 (d, J=14 Hz, CH₂O), 4.70 (m, CH₂ pyridine), 5.12 (d, J=14 Hz, CH₂O), 8.06, 8.57 and 8.84 (aromatic protons).

Acknowledgment

We thank Dr. C. SHUNK for the preparation of starting material, J. SMITH for mass spectral measurements, J. KAHAN, J. HUBER, H. KROPP and J. SUNDELOF for performing the antimicrobial and DHP susceptibility assays, JEAN S. KAHAN and Dr. F. P. DININNO for helpful discussion, and MARYANN HAAS for preparing the manuscript.

References

- SHIH, D.; F. BAKER, L. CAMA & B. CHRISTENSEN: Synthetic carbapenem antibiotics. I. 1β-Methylcarbapenem. Heterocycles 21: 29~40, 1984
- ALPEGIANI, M.; A. BEDESCHI, E. PERRONE & G. FRANCESCHI: Desulphurative approaches to penem antibiotics. VI. From penam methyl esters to penem acetonyl esters: A fully conservative conversion. Tetrahedron Lett. 25: 4171~4174, 1984
- 3) FRANCESCHI, G.; M. ALPEGIANI, A. BEDESCHI, M. FOGLIO, E. PERRONE, G. MEINARDI, S. GRASSO, I. DE CARNERI: A new class of penems, the 2-heterocyclyl(thio)methyl derivatives. J. Antibiotics 37: 685~ 688, 1984 and refs therein
- deVRIES, J.; G. SIGMUND & G. VORISEK: Synthesis of carbapenems with a RXCH₂ -- substituent in the 3-position. Heterocycles 23: 1915~1919, 1985
- 5) GOTACHI, E. (Hoffmann-La Roche): Azabicycloheptene compounds. Brit. UK Pat. Appl. 2092147A, Aug. 11, 1982
- SHIOZAKI, M.; N. ISHIDA, H. MARUYAMA, T. HIRAOKA & S. SUGAWARA: Syntheses and biological activities of new carbapenem derivatives. J. Antibiotics 37: 57~62, 1984
- GUTHIKONDA, R.; L. CAMA, M. QUESADA, M. WOODS, T. SALZMANN & B. CHRISTENSEN: Structure-activity relationships in the 2-arylcarbapenem series: Syntheses of 1-methyl-2-aryl carbapenems. J. Med. Chem. 30: 871~880, 1987
- VEDEJS, E.; D. ENGLER & J. TELSCHOW: Transition-metal peroxide reactions. Syntheses of α-hydroxy carbonyl compounds from enolates. J. Org. Chem. 43: 188~196, 1978
- JEFFREY, P. & S. MCCOMBIE: Homogeneous, palladium(O)-catalyzed exchange deprotection of allylic esters, carbonates, and carbamates. J. Org. Chem. 47: 587~590, 1982

VOL. XLI NO. 6

- MITSUNOBU, O.: The use of diethyl azodicarboxylate and triphenylphosphine in synthesis & transformation of natural products. Synthesis 1981: 1~28, 1981
- 11) PERRONE, E.; M. ALPEGIANI, A. BEDESCHI, F. GIUDICI, M. FOGLIO & G. FRANCESCHI: Desulphurative approaches to penem antibiotics. IV. Bromination of 3-methyl-2-thiacephems, a novel entry in the synthesis of potent antimicrobial agents. Tetrahedron Lett. 24: 3283 ~ 3286, 1983
- KROPP, H.; J. G. SUNDELOF, R. HAJDU & F. M. KAHAN: Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase-I. Antimicrob. Agents Chemother. 22: 62~70, 1982